

Cecal volatilome and microbiota profile of organic chickens supplemented with black soldier fly live larvae

Giovanna Battelli¹, Valentina Bongiorno², Francesco Gai^{3*}, Valeria Zambotto³, Marta Gariglio², Laura Gasco⁴, Achille Schiavone^{2,3}, Ilaria Biasato⁴, Ilario Ferrocino⁴

¹Institute of Sciences of Food Production, CNR, Milan, Italy
² Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
³Institute of Sciences of Food Production, CNR, Grugliasco, Italy
⁴Department of Agricultural, Forestry and Food Sciences, University of Turin, Grugliasco, Italy

*Corresponding author: francesco.gai@ispa.cnr.it

INTRODUCTION

- ✓ **Insects** have shown to be a potential nutritional replacement in poultry as substitute of traditional protein sources, with positive effects on gut microbiota.
- ✓ Only few studies have yet investigated the effects of black soldier fly (BSF) live larvae provision on **short-chain fatty acids (SCFAs)** and **microbiota** composition in chicken's gut.

Fig. 1 Graphical representation of the experimental design.

MATERIAL AND METHODS

- > 240 Label naked neck (LNN) birds were reared from 21 to 82 days of age;
- 4 groups of both gender (M and F), 10
 birds/pen; (6 replicates; 60
 birds/treatment).
- Experimental groups (LM and LF) were fed 10% supplementation of black soldier fly (BSF) live larvae based on the DFI* and compared to control groups (CM and CF) (Fig. 1).
- ➤ 60 birds were then slaughtered and samples of their cecum content were taken for the following analyses:
 - Microbiota by DNA sequencing techniques
 - Volatilome by SPME-GC-MS

MICROBIOTA

Control diet and a 10% BSF live larvae supplementation.

RESULTS & DISCUSSION

- ✓ Cecal microbiota analysis of birds fed BSF live larvae (Fig.2) showed a higher incidence of:
 - Coprobacillus
 - Synergistaceae
 - Christensenellaceae

with the latter having the potential to degrade **chitin** insect meal, a compound with immunoregulatory properties.

- ✓ **Seven SCFAs** were identified, with **butyrate** as the most abundant (**Fig.3**).
- ✓ Even if no significant differences were found between treatments, cecal SCFAs concentration in insect-fed animals were noticed to be less variable than in control group.

CONCLUSIONS

Results show that even a dietary 10% supplementation of BSF live larvae can slightly improve microbiota profile and potentially, SCFAs production in LNN chickens.

SPME-GC-MS

Fig.3 SPME-GC-MS analysis (Total Ion chromatogram) showing the 7 key SCFAs identified in cecal samples of LNN chickens.

Authors acknowledge the financial support for Poultrynsect project provided by transnational funding bodies under the Joint SUSFOOD2/CORE Organic Call 2019

For more information on this project please visit: https://poultrynsect.eu or scan this QR code

